Speeding Up Point Multiplication on Hyperelliptic Curves with Efficiently-Computable Endomorphisms
نویسندگان
چکیده
As Koblitz curves were generalized to hyperelliptic Koblitz curves for faster point multiplication by Günter,et al [10], we extend the recent work of Gallant,et al [8] to hyperelliptic curves. So the extended method for speeding point multiplication applies to a much larger family of hyperelliptic curves over finite fields that have efficiently-computable endomorphisms. For this special family of curves, a speedup of up to 55 (59) % can be achieved over the best general methods for a 160-bit point multiplication in case of genus g =2 (3).
منابع مشابه
Efficiently Computable Endomorphisms for Hyperelliptic Curves
Elliptic curves have a well-known and explicit theory for the construction and application of endomorphisms, which can be applied to improve performance in scalar multiplication. Recent work has extended these techniques to hyperelliptic Jacobians, but one obstruction is the lack of explicit models of curves together with an efficiently computable endomorphism. In the case of hyperelliptic curv...
متن کاملA New Double Point Multiplication Method and its Implementation on Binary Elliptic Curves with Endomorphisms
Efficient and high-performance implementation of point multiplication is crucial for elliptic curve cryptosystems. In this paper, we present a new double point multiplication algorithm based on differential addition chains. We use our scheme to implement single point multiplication on binary elliptic curves with efficiently computable endomorphisms. Our proposed scheme has a uniform structure a...
متن کاملFaster Point Multiplication on Elliptic Curves with Efficient Endomorphisms
The fundamental operation in elliptic curve cryptographic schemes is the multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficiently-computable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods. For this s...
متن کاملSpeeding Up Pairing Computations on Genus 2 Hyperelliptic Curves with Efficiently Computable Automorphisms
Pairings on the Jacobians of (hyper-)elliptic curves have received considerable attention not only as a tool to attack curve based cryptosystems but also as a building block for constructing cryptographic schemes with new and novel properties. Motivated by the work of Scott, we investigate how to use efficiently computable automorphisms to speed up pairing computations on two families of non-su...
متن کاملFour-Dimensional GLV via the Weil Restriction
The Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomorphisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman and Satoh proposed for cryptographic use two families of genus 2 curves defined over Fp which have the property that the corresponding Jacobians are (2, 2)isogenous over an extension field to a product of elliptic ...
متن کامل